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Abstract v
/8002

Theoretical and experimental results on the scattering by nonspherical
particles whose size is of the order of the wave length are presented. '

A method of solution of the problem of scattering by axially symmetric
penetrable particles using approximate matching of boundary conditions is
applied to the scattering by prolate spheroids. Application is made specifi-
cally to the scattering of a scalar wave incident along the symmetry axis.
In comparison with exact scattering coefficients for the sphere, it is shown
that the "approximate' method yields results as close as one wishes to the
exact results. Calculations are presented for particle sizes ranging from
those small enough to be calculated by the Rayleigh approximation to sizes
generally beyond the first major resonance in the total cross-section curve.

Numerical calculations are made for the tilted infinite dielectric cylinder.
Some new and interesting properties of the scattering efficiency as a function
of orientation are demonstrated. Particularly noted is the existence of a
polarization reversal as a consequence of tilt for thin cylinders.

A new and improved method for obtaining microwave scattering by
small particles is applied to the consideration of the detailed dependence ¢n
orientation of the cross-section of prolate spheroidal particles. The particle
sizes range from slightly beyond the Rayleigh approximation to somewhat
larger than the first major resonance in the extinction curve. The results
are, where appropriate, compared with the Rayleigh approximation and a
simple ray approximation. The ray approximation is shown to yield better
results in certain cases than had been anticipated although there exists an

intermediate but reasonably defined span of particle sizes for which the

approximation is even qualitatively poor. %/%z/



1. Introduction

The method of scattering is applied as an investigatory
tool in studies ranging from the character of atomic nuclei through
sizes and shapes of large molecules to the character of disturbances
in the solar corona. The demands made upon the theory of the scat -
tering process have often not been met even for application to situations
which involve well-known physical processes and basic mathematical
equations. Disregarding the possibilities of complicated interactions
between waves and obstacles there still are important gaps in the
theoretical procedures. As a matter of fact the special case of the
scattering of light by simple nonspherical particles is adequately treated
only when the particles are either very small or very large compared
with the wave length of light.

Van de Hulst1 has surveyed the domain of m (m = index
of refraction) and ka (ka = 2wa/\, a = a characteristic linear dimension,
N = wave length) for the regions of simple approximations and simple
physical interpretations. The ranges of ka and m with which we are
concerned here are just those which do not satisfy the simplicity criteria.
We consider here those particles for which ka 2 1, (m - 1) not <« 1,
2ka (m -~ 1) 2 1; i.e., neither the Rayleigh2 nor the Ray‘leighnGansaBorn3
approximations are applicable.

The primary aim of this paper is to report on some progress
that has been made at Rensselaer in extending our range of information, both

actual and potential, concerning the scattering by nonspherical sharply




bounded obstacles. We believe that the results which are present are new and
that they indicate the possibilities for obtaining complete solutions to a useful
range of problems in the near future. In other words, we believe that the
problem of single scattering will soon be essentially solved.

The work described in the following three sections is abstracted from
separate and more detailed accounts which are reported on elsewhere.

In section 2 we describe a method4 for obtaining the numerical solution
to the scattering by an axially symmetric penetrable particle whose size
ranges from the very small to a value essentially limited by computing machine
time. . Although the problem treated here is limited to that of a scalar
wave propagated along the axis of the particle, there does not appear to be
any difficulty to generalize at least to.the electromagnetic case. This has been
done, but a formal solution and procedure are too lengthy to give here.

The numerical solution to the scattering of electromagnetic waves by
an arbitrarily oriented dielectric cylinder is discussed in section 3.

In section 4 we give some results obtained by an experimental method
using microwaves for the study of scattering by aribtrarily oriented penetrable
spheroids. The value of the microwave method lies in its applicability to the

widest range of anisotropy of shape and optical properties.
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Z. Solution to the Scattering Problem

by Approximating Boundary Conditions

We consider here the problem of the scattering of a plane
scalar wave which is incident along the axis of a smooth convex
cylindrically symmetric body. The boundary conditions which we
apply will correspond to the scattering of Schr8dinger waves by a
square well potential and to the scattering of acoustic waves by a
body whose density is equal to that of the surrounding medium. Our
results will thus be the scalar wave analog of the electromagnetic
scattering problem.

The method of approximation is applied first to the case of the
sphere as a means of checking the accuracy of the method by comparison
with exact solutions. Application is then made to prolate spheroids
up to elongations of two.

As we shall see, the solutions which are obtained are complete
in the sense of being valid not only in the asymptotic region, but at all
interior and exterior points. Furthermore it is reasonable to expect
the solutions to have reliability equal to that of Mie5 series expansions
so long as appropriate restrictions are imposed on the range of applica-
bility.

a. Outline of the computational procedure

We desire solutions to the scalar wave equation

Vi + 1Ry = 0 (1)
where k(r) = 211/)\(1;) is the wave number at the point r. The problems

which we treat will be limited to homogeneous scatterers which are



characterized by having a wave number inside k, which is a constant,

m (index of refraction) times the wave number outside, k.

The boundary conditions on the solution are that the wave

function and its normal derivative be continuous

Lpinside - llJoutside at the surface (2a)
n- Vlll.m =n- vy e of the scatterer (2b)
where nis the normal to the surface.
We further impose the radiation condition
- eikz + % eikr 2c)
r—-0o

We may expand the solutions inside and outside in the standard

forms which satisfy the differential equation and the radiation condition

(2c)
b= k2 - !%:0 20 +1) i j (k)P (cos 6)
o = @+nifa v @) P (cos ) (3)
sc 2=0 A y4
o L. .
th = 12=0 (22 +1)i Bl _]I(KI') Pl(cos 6)

where {, is the incident wave, qJSC is the scattered wave, th is the
inc

transmitted wave, and where jl (z) is the spherical Bessel function and
hl(l) (z) is the spherical Hankel function of the first kind.

It is now only necessary to impose the conditions (2a) and (2b)

and to solve for the coefficients Al and Bl. Note that Lpin = Lpt and Y out

=¥ s

inc
In the case of the sphere these B.C. (boundary condition) equations

separate and one gets an infinite set of independent pairs of equations



& ° in the A' s and B' s which may be readily solved. If the bounding
. surface is nonspherical, the infinity of equations are coupled and a
simple solution no longer exists.

The series expressions(3) are generally not rapidly converging.
However, it is well known that the number of terms which are required
for a good representation of the solution is of the order of n = ka = 2ma/\
where a is a typical linear dimension of the scatterer. In the limit of
very small scatterers it would only be necessary to find A0 and BO in
which case we see that the functions in equation (3) are independent of
angle. For small scatterers it is then obvious that if the boundary
conditions are satisfied at only one point they are automatically
satisfied at all points on the surface. It is to be expected that the
shorter the wave length, the more points on the boundary need to be
considered. In other words, the number of points at which the
boundary condition is satisfied should be at least of the same order
(ka) as the number of important terms in the series expressions (3).
Because of cylindrical symmetry each point corresponds of course
to a circle about the symmetry axis.

Our procedure consists in choosing some finite number N of
points at which to satisfy the boundary conditions (2a) or (2b) and then
truncating the series so that we obtain an equal number of unknowns.
We then solve the 2N inhomogeneous equations in the 2N unknowns
A! and BI’ 2=0to N - 1. Each point (circle) on the boundary is
represented by some angle #. It should be noted that because of the

reflective symmetry of the scatterers we have chosen, if the boundary



conditions are satisfied for a given value of §, they are then automatically

satisfied for the angle 7w - 4.

We shall choose s angles Gi in the first quadrant to define an

approximation of order N = 2s. We denote the approximate solutions by

2s) _ 2s-1 1.

Yoo T Zo e+ 1)1 J, (kr) P ()
(2s) _ &s-l 2, (2s) (1)

b= f:o @e+1) & AT B (kr) P, (4)
2s) _ 2s-1 2 _(2s) .

¢, = E—-O (20 +1) & B, j, ler) P )

where n = cos 6.

The boundary conditions (2a) and (2b) are to be replaced by the sets

of equations

2 2 2
b ) =, B ey B (5a)
2 2 2
w7 B =g ) 4y @ mi)} (5)

where ., = cos 0, .
i i

We evaluate the scattering efficiency from the optical theorem

Q= —‘512 Im {£(0)}
(ka)

which for the exact solution is given by

o - - 42 2 (20+1) Re A
o )
(ka)

and for the approximate solution is given by

_ 4 2s-1 (2s)
QO = - — 17:50 (22 +1) Re A (6)

b. Approximate scattering by a sphere

The sphere is used as a test case for the method because we may

compare with exact results. The exact solution for the sphere is given by
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the coefficients

@ jjlka) j,' (k) - ka ' (ka) j,(ka)

A = 1
1 ka hl‘ (ka)'jl (ka) - ka hl (ka) jl' {ka)
. . (7)
. ka[hl‘ (ka) i, (ka) - h! (ka) _]I| (ka)]
1 ka hll (ka) jl (ka) - ka hl (ka) j1| (ka)

It is instructive and possible to apply the approximation (5) piecemeal

to the sphere. We consider three successive procedures: (1) Exact
boundary condition for normal component of the gradient of Y but approxi-
mate boundary condition for §; (2) Exact boundary condition on{ but
approximate one'for the gradient of y; (3) Full approximation as given

in Eq. (5). In all cases the coefficients are solved by the same trunca-

tion of the series expressions. We denote the solutions obtained by
2 2 2
procedures (1), (2) and (3) by Ai f) , A: Z)and A([ s) etc. respectively.

Procedure (1) involves the simultaneous solution of:

From (5a) and (4)

ika p; 2s-1 2 (2s)
L zz (-1)" (22+1) Al,l hl (ka) PI(Hi)
C2g-1, g 2s) . (8a)
=20 (1t e 87 ) Py )
and from (2b) and (3)
ka [jl| (ka) + hl' (ka) A!] = Ka Bl jll (ka) (8b)

In simultaneously solving for the A' s and B' s in Eqs. (8a) and (8b),

2
we let the Al and Bl of Eq. (8b) be equated to the A( s) and B(ZS) of

2,1 £,1
Eq. (8a).

As a simplification in the numerical analysis the equation

(8a) may be separated into two sets of equations each of which is



either even or odd in ..
i

The result of combining (8a) and (8b) is

2
Al, ( S) {1-&- Py (ka)} A (ka) (9)
where
A (2s) (ka) - 1
(25)_ i 10)
{ ka j ' (ka)j (ka)
_ [ £ 1 ]

Ka jl(ka) jﬂ' (k)

2
and A ( s)(ka.) is a rather complicated algebraic expression which
P g

4
2
we shall not present here. Instead we give the expansions of Al( S)(ka)
in powers of ka which, for even and odd values of £ are
2n+24
(=1) " (ka) c
2s) s-1-1 2n+2{, 24 (2s)
A = + 11
2p k@)= T A T D) =Y Lo ) (112)
and
n 2n+24+1
(-1) (ka) c
(2s) s-4-1 2n+24+1, 20+1 (2s)
A = Z + M 11b
241 K3 =2 oI I A (A + DERN Y (b)) (110)
(2s) (2s) : .
where L (|.Li) and M (p.,l) are functions of the angles at which the

(2s) (2s)

B.C.!' s are satisfied. Both L and M are expansions in (ka)

. 2 Z2s+l
in which the lowest order term is (ka) ® and (ka) s respectively.

The quantities CZn, > and C2n+1, 24l 2T coefficients in the expansions
2n DB 2n+l B .
- =z L. P
b= G Cn 2 T W Z0 C2n41, zitt2i0 ™

Procedure (2) involves the simultaneous solution of:
From (5b) and (4)

. ikap; 2s (Zs)
k Ly k o1 24+1 h'(ka)P
ika p. e al1 ( ) LZ ’ (ka) z(”i)

(12a)

and from (2a) and (3)



[j,(ka) + b (xa) A ] = j () B (12b)

Similarly to our previous treatment we consider the A£ and Bl in

@) g 2

{12b) as approximate values A

0.2 and combine (12a) and

(12b) to obtain

(2s) _ (25)
A =le g k)] A, (13)

where

lq(ZS)
j

Ka jﬂ(ka) jﬂ'(lca)

(ka) - 1

1-[ ]

kaji'(ka)jl(fca)

(2s)

The quantities I‘ﬁ (ka) when expanded in powers of (ka) are

2
very similar to the A ; s) and are given by (for £ even and odd

respectively)

n 2nt2g-1
2-1-1 (-1) (ka) C2n+24, 20

(2s) S [ ]
n=0 (2n+22-1)! (40+1) jZE' (ka)

_ (2s)
2 k@)=

r

+ N (p»i) (15a)

2n+24

C

o -1)ka)
(ZS)(ka) } szz 1

r ] : !
20+1 n=0  (2n+20)! (42+3) 32041 (ka)

) (15b)

where only the functions of the higher powers of (ka) involve the

choice of B.C. angles M

Finally then we use the full approximation to obtain from

Eq. (8a) and (12a) the coefficients

. . 2s) . : 2s)
A(ZS) Ka Jz(ka) j, (ka) AZ (ka)- kan (ka) J]Z(Ka)l“]Z (ka)

] - ka hl‘ (ka) jl(Ka) - Ka hl (ka) jl‘ (ka) (162)

' . (2s) - (2s)
B(Zs) ka[hﬁ (ka) Jl(ka) AI (ka)-hﬂ(ka) j, (ka)l“ﬂ (ka)]

£ ka hgl (ka) jﬂ(fca) - Ka hz(ka.) jll (ka)

(16b)

2s) (2s)

where the modifying coefficients A(l ®) ana l"l are identical to

those defined by equations (11) and (15).

10.



We may then write

(2s) (2s)

(2s)
A i

=[1+p (ka) + ¢ ka) 1A

£

Several general facts are rather evident. It can be seen by
tracing back along the trail of definitions of P, and gl that both of
these quantities are real (for real k) and that consequently the phases
of the exact and approximate Al are identical. Further we see that
the approxima tion is independent of the choice of angles up to some

2s

power of (ka) [at least (ka) ]. This means that for £ = 2s - 1 we
obtain only the leading term in the expansion (in ascending powers of
ka)but that for smaller values of { we obtain successively more and
more terms which are independent of the choice of boundary points.

2 21+1
) go as (ka) ! and become identical with

Finally as ka - 0 the A;
the Rayleigh approximation.

The approximate expressions are so complicated that it is
certainly not easy to draw any more general inferences if indeed they
exist. At this point we must resort to demonstrating the two features
which imply the usefulness of our approximation: (1) The values of
the coefficients converge reasonably rapidly to some value; and (2)
this value is the correct one.

Extensive numerical analysis was carried out in evaluating

2 2
(25) and gé s). We present in Tables 1 and 2

(2s) (2s)
I * gl

th titi A, B,
e quantities A ' pz

(2s) .
some sets of values of pz (partial procedure (1)) and p

(full approximation procedure) for spheres with refractive index m = 1.

Noting that the validity of the approximation is justified only

s) (2s)

2
if the quantities pé and §1 are small it is rather interesting to

(17)

11.
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Table 1

(2s)

Numerical Values of the p y

(ka) for the Refractive Index m = 1.3

s =2

ka = 0.2 ka =0.4 ka=0.6 ka=0.8 ka =1.0 ka = 1.5 ka =2.0

2.2(-5) 3.5(-4)  1.8(-3) 5.9(-3)  1.4(-2)  7.6(-2)  2.5(-1)
~1.7(-4)  -1.3(-3) -1.3(=3) -2.1(-3) -2.7(-3) -1.3(-3)  1.0(-1)
2. 4(-1) 2.3(-1)  2.4(-1) 2.1(-1)  2.0(-1)  1.8(-1)  9.2(-1)
1.9(-1) 2.6(-1)  2.5(-1) 2.6(-1)  2.5(-1)  2.2(-1)  1.9(-1)

s =3

ka = 0.2 ka = 0.4 ka=0.6 ka=0.8 ka=1.0 ka=1.5 ka =2.0

2.1(-9)  1.3(-7)  1.6(<6) 8.9(-6)  3.5(-5)  4.3(-4)  2.7(-3)
1.1(-7)  1.7(-6)  B.1(<6) 2.3(-5)  4.6(-5)  4.9(-5) -7.7(-4)
~1.6(-4)  -6.3(-4) -1.4(-3) -2.4(-3) -3.5(-3) -6.3(-3) =7.0(-3)
-1.3(-4) -5.4(-4) -1.2(-3) -2.1(-3) -3.2(-3) -6.5(-3) -9.7(-3)
2.9(-1)  2.9(-1)  2.8(-1) 2.8(-1) 2.8(-1)  2.6(-1)  2.3(-1)
1.6 S7.3(<1) <T.2(-1) =T.2(=1) -T.1(-1) -6.9(-1)  -6.5(-1)

ka = 0.2 ka=0.4 ka=0.6 ka=0.8 ka=1.0 ka=1.5 ka =2.0

-6.1(-13) -1.6(-11) -4.1(-10) -4,2(-9) -2.5(-8) -6.9(-7) -7.2(-6)
3.6(-12)  1.5(-10) 1.5(-9) 7.7(-9)  2.4(-8)  6.0(-8) -1.7(-6)
-1.3(-8) -2.0(-7) -9.8(-7) -3.0(-6) -7.0(-6) -2.9(-5) -5.8(-5)
6.2(-7) 3.7(-7)  1.9(-6) 5.9(-6)  1.4(-5)  6.5(-5) 1.8(-4)
-4.3(-3)  -4.4(-5) -9.6(-4) -1.7(-3) -2.6(-3) -5.5(-3) -9.0(-3)
-1.5(-2)  -6.4(-3)  5.5(-4) 1.7(-3)  2.7(-3)  5.8(-3) 9.8(-3)
3.1(-1) 3.1(-1)  3.1(-1)  3.1(-1)  3.0(-1)  2.9(-1) 2.8(-1)
9.2(-1) 9.1(-1)  9.1(-1)  9.1(-1)  9.0(-1)  8.8(-1) 8.5(-1)



13.

Table 2
Numerical Values of the ’rizs)(ka) = pfs)(ka) + gj(zzs)(ka) for m = 1.3
s =2
7',1(4)ka ka = 0.2 ka = 0.4 ka = 0.6 ka = 0.8 ka =1.0 ka =1.5 ka =2.0
0 29.0(-4)  -3.6(-3)  -4.2(-2)  -9.0(-3)  -8.4(-3) 4.3(-2) 2.2(-1)
1 5. 6(-4) 2.2(-3) 7. 6(-2) 1.5(-2) 1.8(-2) 4.2(-2)  -7.6(-2)
2 1.1 -7.5(-1) 1.1 1.1 -1.1 -1.0 -9.8(-1)
3 1.1 “1.7(-1)  =1.9(-1)  -1.9(-1)  -=2.1(-1)  -=2.0{(-1)  -2.1(-1)

1-,(6)ka ka = 0.2 ka = 0.4 ka = 0.6 ka = 0.8 ka=1.0 ka =1.5 ka = 2.0

0 -1.4(-6)  -2.2(-5)  ~1.1(-4)  -3.3(-4)  -7.6(-4)  -3.0(-3)  -4.1(-3)
| -6.8(-7)  -1.1(-5)  -5.6(-5)  -1.8(-4)  -4.5(-4)  -2.4(-3)  -9.9(-3)
2 5.6(-4) 1.5(-3) 5.1(-3) 9.1(-3) 1.4(-2) 3.2(-2) 5.9(-2)
3 1.8(-4) 7. 3(-3) 1.6(-3) 2.9(-3) 4.7(-3) 1.1(-2) 2.0(-2)
4 6.4(-1) 6.5(-1) 6.5(-1) 6.4(-1) 6.4(-1) 6.1(-1) 5.8(-1)
5  -18.7 2.8(-1) 3.0(-1) 3.0(-1) 3.0(-1) 3.2(-1) 3.4(-1)

s =4
Ti(s)ka ka=0.2 ka=0.4 ka=0.6 ka=0.8 ka=1.0 ka=1.5 ka=2,0
0 -2.2(-11)  -1.4(-9) -1.6(-8) -8.9(-8) -3.4(-7) -2,4(-6) -1.7(-5)
{ 2.0(<11)  -1.2(-9)  -1.4(-8)  -8.1(-8)  -3.1{-7)  -3.2(-6)  2.4(-5)
2 3.8(-8)  4.1(-7)  3.1(-6)  10.0(-5)  2.5(-5)  1.3{-4)  4.4(-4)
3 1.6(<6)  -8.0(-6)  -3.9(-6)  -1.3(<5)  -3.1(-5)  -1.6(-4)  -5.3(-4)
4 -9.2(-3)  8.1(<4)  9.8(-3)  1.8(-3)  3.0(-3)  6.4(-2)  1.2(-2}
5 22.0(-1)  -1.5(<2)  -1.7(-3)  -1.4(<3)  -2.2{(-3)  -5.2(-3)  -9.6{-3)
6 -1.0(<1)  -1.0(-1)  -1.1(-1)  -1.0(-1)  -1.1(-1)  -1.1(1)  -1.1(-1)
7 2.6(-1)  -2.6(-1)  -2.6(-1)  -1.2(-1)  -2.7(-1)  -2.8(-1)  -2.9(-1)



observe the numerically experimental fact that the full approxima-
tion procedure is not consistently worse and is in many cases better
than procedure (1) in which the B.C.'s are presumably better
satisfied.

We have explicitly evaluated the pers) and gézs) only for values
of ka up to ka = 2 (implicitly they were calculated up to ka = 5. 8).
In any case it is clear to see that for s = 2, the first two scattering
coefficients A(lzs) are good to within a few percent up to ka = 2. For
s = 3 we obtain the first four scattering coefficients to this order of
accuracy; and finally for s = 4, the first six are so defined. Although
one would expect the values of p(ﬁZs) to be consistently smaller for
smaller values of ka than for larger values of ka, we have found this
not to be true. For example, the value of p (34) is largest for ka = 0.2
and is almost constant from ka = 0.4 to ka = 2.0. It should be pointed
out that for smaller values of ka it is possible that numerical errors
may have accumulated in the inversion of the simultaneous equation
matrix so that the value of p (34) might be in error. In general, the
computational procedure of inverting the matrices is such that if ka
is small, it is preferable to use an approximation whose order is not
much larger than the minimum one required.

Tables 3 and 4 are to be compared term by term for differences
in the complex scattering coefficients which show up as dependent on
varying the selection of angles at which the B.C. 's are satisfied.

Several conclusions are evident after a careful perusal of these two

tables. One conclusion is that over the expected range of validity of

14.



ka

Scattering Coefficients Al

Table 3

(8)

15.

for a Sphere of Refractive Index m = 1.3

Angular Positions at which Boundary Conditions are Satisfied are

0

(8)
A0

-0.049, 534, 84
i0.216, 981, 8

-0.423,076,0
i0, 494, 041, 9

-0.486,047,5
i0. 499,869, 7

-0.939,155,5
i0.244, 630, 7

-0.991,155,4
i0.119,272,8

®)
A4

-1.003,705(-13)
i6.583,169(-8)

-1.245,258(-8)
i1.115,763(-4)

-5.298, 698(-5)
i7.274,703(-3)

-0.017,535, 81
i0. 130,993, 5

-0.730,802,8
i0. 434,599, 0

-5,

-1.

-2.

-2.

-0

i0. 353, 127, 0

. 665,144, 1

i0. 471,970, 6

.716,439,4

i0, 450, 687, 1

. 996,484, 7

i0.014, 720, 876

(8)
s

244,207(-14)
i4. 640, 630(-10)

026,259(-11)
i3.211, 343(-6)

252,085(-7)
i4.776,254(-4)

056, 689(-4)
i0.014, 530, 29

. 040, 915,22

i0.203,205, 4

_ o _ o _ o _ O
=107, 6,=32.57, 6,= 55", 6,= 77.5
(8) (8)
Al A,
-2.095,560(-4) -1.646,739(-7)
i0. 014, 475, 2 i4.057, 968(-4)
-0.146,019,9 -1.927,607(-3)

i0. 043, 859, 41

.299,405,8

i0. 457,759, 2

.838,190,8

i0. 365, 549, 5

. 877, 347,5

i0. 328,293, 3

(8)
A6

.691,890(-18)

i2.028,563(-12)

. 745, 454(-15)

i5.585, 579(-8)

. 164, 604(-10)

i1.837, 003(-5)

.121,423(-6)

i9. 316, 697(-4)

. 996, 412(-4)

i0. 016, 984, 88

(8)
A3

-4.873,225(-11)

i6. 470, 687(-6)

-7.381,245(-6)

i2. 716, 772(-3)

-6,855, 142(-3)

10. 082,501, 63

-0.508, 918, 1

i0. 499,542, 4

-0.945,681,7

i0.223, 482, 4

(8)

Az
1.154,230(-18)

i8.836, 961(-15)

-2.406, 651(-18)

i1.117,888(-9)

-7.261,956(-13)

i8.727,847(-7)

-6.749, 310(-9)

i8.438,223(-5)

-6.097,832(-6)

i2. 545, 918(-3)



ka

1.0

Scattering Coefficients A£(8)

Angular Positions at which Boundary Conditions are Satisfied are
o

0

(8)
A0

-0.049,534, 32

i0,216, 979, 5

-0.422,831,5

i0. 493,756, 3

-0.488,770,3

i0, 502, 669, 9

-1.045,818

10.272, 414,2

-1.197,145

i0. 144, 061, 1

(8)
By

-2.162,455(-15)

i6.536, 006(-8)

-1.207, 444(-8)

i1.081,871(-4)

-4.897,194(-5)

i6. 723, 468(-3)

-0.014,826, 46

i0.110, 754, 5

-0.525,503,7

i0. 312,510, 3

=0

-2,

Table 4

0
, 8,=22.57, 0
(8)
Ay

095, 557(-4)
i0.014, 474, 52

.146,019,17

i0, 353, 125, 1

.665,107,3

i0, 471, 944, 5

.716,441,3

.10. 450, 744, 9

1

-1.

-2,

-1.

-0.

. 000, 568

i0. 014, 781, 20

A (8)
5

.849,599(-13)

i2.604,276(-11)

014, 600(-11)
i3. 185, 952(-6)

207, 244(-7)
i4. 681, 155(-4)

972, 147(-4)
i0. 013, 933, 01

037, 784,93
i0. 187, 658, 8

-1.

o _ o
3" 45", 94—f67.5

(8)
AZ

646, 443(-7)
i4. 057, 418(-4)

.923,037(-3)

10. 043, 755, 42

.295,333,8

i0. 451,533, 5

.801,279,1

i0. 349, 451, 7

.878,284,0

i0. 328, 643, 7

(8)

A
6

.208,555(-19)

i1.173, 327(-12)

.072,432(-15)

i3.122, 903(-8)

.122,014(-10)

i9. 360, 192 (-6)

. 864, 164(-7)

i4, 041, 107(-4)

.290,071(-4)

i5,. 482, 845(-3)

16.

for a Sphere of Refractive Index m = 1.3

(8)

A3

-4.429,208(-11)

i6. 470, 727(-6)

-7,381,756(-6)

i2.716, 960(-3)

-6.857,578(~3)

i0, 082,530, 94

-0.509, 469, 7

10.500, 083, 8

-0.947,674, 3

i0.223,953, 35

NJ

-7.256,898(-19)

i2.497,293(-16)

9.036, 006(-18)

i7.667,151(-10)

-4.769,251(-13)

i5.732,091(-7)

-4.148, 749(-9)

i5.186, 912(-5)

-3. 406, 539(-6)

i1.422,271(-3)



the approximation (£ ¢ s, ka < s) the differences in these scattering
coefficients is trivial except where the coefficients themselves become

so small as to be negligible. As has already been pointed out the phases

of the scattering coefficients should be and are invariant to the choice of

angles. The tables have been spot checked for this as an indication of the

possibility of numerical error and no deviations have been detected.

Tables 5 and 6 indicate again how the important terms in the
series are independent of the choice of B.C. angles. In particular we
see that for s = 6 the values of the scattering coefficients for sizes up to
ka = 5 are given within better than one percent up to £ = 7 (8th term) where
the coefficients may already be neglected.

For calculating the total cross-section for a given value of ka

it appears from Table 7 that one can be guaranteed of an accuracy con-
siderably better than one percent by using the approximation which
involves a number of B. C. points equal to the nearest integer less than ka.
c. Approximate scattering by prolate spheroids
The configuration appropriate to this problem is shown in Fig. 1.
We consider a prolate spheroid of length 2b and width 2a (b > a) whose sym-
metry axis is along the direction of propagation of the scajlar radiation.

The equation for the surface of the spheroid is

f

2 2, -5
-z.- = (1 -n cos 0) 2 (18)
2 2 .
where n~ =1 - (a/b) . Although there might be some advantage
in using speroidal coordinates we have found it easier, at least in
this first approach, to continue to use spheroidal coordinates. The
expansions for the interior and exterior wave functions are then

formally exactly the same as they were for the sphere and the

17.



Table 5

18‘

Table 6

Scattering Coefficients for a Sphere of Refractive Index m = 1.3

Angular Positions at which Boundary
Conditions are Satisfged are o
0,= 8°, 0,= 22°, 6,= 36", 6,= 50

4
0= 64°, 6 = 78°

6
ka = 4 ka = 5
(12)
AlY -0.936,519,3 _0.985, 896, 9
10.243,944,0 i0.118,640,0
Aiiz) _0.716, 423, 2 _0.999, 776, 7
i0. 450, 733, 6 i0. 014, 769, 50
A;iZ) -0.840,176,5 -0.877,252,7
i0. 366, 415, 5 i0. 328, 357, 8
.Agiz) -0.509,296, 1 _0.947, 106, 47
i0.499, 913, 4 10,223,819, 1
.Ai?z) 0.017,603,28  -0.738, 400, 7
10.131, 497,4 ' 10.439,114
(12)
A5 -2.003,107(-4) -0.038, 962,97
i0. 014, 151, 74 i0.193,509,56
(12)
.A6 -1.447, 620(-6) -5.520, 048(-4)
i1,202, 670(-3) i0. 023, 460, 39
(12)
AZY) _6.398,064(-9)  -5.736,642(-6)
i7.998, 417(-5)  i2. 395, 116(-3)
(12)
Ag Tl -1.762,039(-11)  -3.896, 484(-8)
i4.155, 607(-6)  il.957, 383, 6(-4)
(12)
Ag®) -3.913,989(-14)  -1.811,698(-10)
i1 776,048(-7)  il. 349, 351(-5)
(12)
A10 -9.873,709(-17) -4,395,214(-13)
i5.030, 706(-9) i5. 904, 508(-7)
(12)
AL -1.009,969(-17)  -1.114,085(-15)

i1.748, 354(-10) i3. 368, 192(-3)

Angular Positions at which Boundary
Conditions are Satisfied are

o _ , 20 RN )
91— 0, 62— 157, 63— 307, 84— 45

_ o _ o
95— 607, 96— 75
ka = 4 ka =5
-0.936,698,8 -0.986,421,9

10.243,990.8 i0.118,703,2

-0.716,423,4
i0. 450, 733, 7

-0.999,782,7
i0. 014, 769, 59

-0.840,119,5
i0. 366, 390, 7

-0.877,455,1
i0. 328, 333, 5

-0.509, 296, 3
i0.499,913,6

-0.947,107,9
i0.223,819,5

-0.017,597,82
i0. 131, 456, 7

-0.737,409,0
10. 438,527, 6

-2.003,091(-4)
i0.014,151,63

-0.038,961, 65
10.193,502, 9

-1.444, 638(-6)
i1.200, 190(-3)

-5.488, 371(-4)
i0. 032,235, 76

-6.401, 423(-9)
i7. 998, 753(-5)

-5.737,106(-6)
i2. 395, 310(-3)

-1.707,119(-11)
i4. 056, 325(-6)

-3.735,678(-8)
i1.876, 609(-4)

-1.499,002(-13)
i1.764,777(-7)

-1.790,520(-10)
i1.334,291(-5)

-6.721,264(-17)
i3.735,586(-9)

-3.131,437(-13)
i4.209, 051(-7)

-9. 904, 413(-17)
i1.393,141(-10)

-8.466,696(-16)
i2.613,487(-8)
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PLANE WAVE
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ol10)

ol12)

(8)
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12)

Table 7

Exact and Approximate Scattering Efficiency Factors

ka = 0.4

5.527,85(-3)
5.530, 11(-3)

5.528, 50(-3)

ka =2.4
1.273, 64
1.273,626
1.273, 637

1.273, 643

3.175, 907
3.178, 406

3.182,225

for a Sphere with Refractive Index m = 1.3

ka = 0.8

0.088, 425
0.088, 488
0.088, 488

0. 088, 488

ka = 2.8
1.573,81
1.573,636
1.573,762

1.573,807

3.533, 64
3.523,152
3.521,577

3.533,232

ka=1.0

.200, 655
.200, 658
.200, 658

.200, 657

.790, 19
. 789, 767
.790,077

.790, 189

. 663,221
. 642,263

.656, 848

ka =1.4

0.487, 09
0.487,272
0.487,273

0.487,273

ka = 3.2

2.019,190
2.019,776

2.020, 001

ka = 5.8

3.990, 987

3.924, 411

3.937,768

ka =1.8

0.703,52
0.703,522
0.703,524

0.703,524

ka = 3,6
2,340,13
2,338,452
2.339,667

2,340,117

20

ka=2.0

0.870,83
0.870,826
0.870,829

0.870,831

ka = 4.0

[§¥]

. 753, 11
2.750, 422
2.752, 484

2.753, 100



21.

equations defining the approximate wave functions are the same as
Eq. (4).

The boundary conditions (Eqs. (2) or (5)) are to be applied now
at the surface defined by Eq. (I8). Applying the boundary conditions:

we get the resulting sets of equations for matching the function:

. 2s-1
ip p > A (2s)
e + =0 i (24+1) hl(p) Ag Pﬂ(p)
peol (19a)
_ S-1 1 . (2s)
= B i (24+1) _]l(g) B, Pz(““)
and for matching the gradient:
2, i 2, 25! 2
ipp (L-n) e M+ (@7p) Zo i 2041 h'(p) Pyl) Aé )
2g-1
2 2 . (2s) _
- p(l-p f:o (41 b (p) P rp) A7 =
2, es-l gy . 2s) (19b)
=B/ T @D NE) Pk By

Z 2 Zs—l 1 . 2
-t B0 @0 P B®)

where

o ¢ B

p: s =
; 2 2 f"si":z
l-mp 1-mp

a = ka B = kKa M = cos @
Equations (19a) and (19b) may be separated into equations which
are even and odd in p and which involve respectively the even and
odd values of {.
The expressions become so formidable that little can be deduced
from them. We therefore go immediately to a presentation of some
numerical results.

Table 8 is presented to show how, (by comparison with Table 7)



Table 8

22,

Scattering Efficiency Factors for a Prolate Spheroid with b/a=2andm=1.3

NG
4(10)
o(12)

o4

(®)
(10
ol12)
ol14)

ofte)

(10)
(12)

(14)

O O DO DO DO

(16)

0.011,920,8

0.011,920,8

1N

ka=2.4

. 854,463
. 796,134
. 798, 951
. 799,104

.798,918

ka = 4.5

.262,951
. 544,403
.186,779
. 373,065

. 420, 588

ka = 0.8

0.236,553

0.236,554

ka=2.8

5.171,704
5.184,812
5.138,471
5.139,032

5.139, 445

ka = 5.0

4,222, 431

4. 305,276

ka = 1.0

0.484, 639
0.483,859

0.484, 743

ka = 3.0

4.650, 036

ka = 5.4

2.752,570
2.919, 845
2,873, 365
3.260, 315

3.290, 666

ka =1.4

1.758,542
1.758,101

1.759, 671

ka = 3.2

5.525,259
6.152, 740
6.268,150
6.273, 697

6.272, 457

1.447,217
2.334, 681
2,059,084
2.206,513

2.189,633

ka=1.8

3.193, 689
3.196,556

3.194, 680

ka = 3.6

6. 930, 284
5.922, 495
6.061, 440
6.071,912

6.071, 789

3.450, 687
3.450, 397
3.450, 037

3.450, 548

ka = 4.0

7.298,593
6.288, 430
6.261,153
6.265,153

6.265,833



the range of validity of the approximation depends on the degree of
elongation. It is to be expected that the number of scattering
coefficients required to give a certain degree of accuracy should be

i~ (E)ka if it is £ ~ ka for the sphere. The reason for this is clear
when one notes that the phase shift for a ray parallel to the axis of

the spheroid is exactly b/a times as large as that for a ray traversing a
sphere of radius a. One may reasonably conclude that the order of
approximation required for an accuracy of one percent is obtained

when s is one less than the nearest integer to (b/a)ka-

Figures 2 and 3 contain a graphic portrayal ot differences
between various orders of approximation for two elongations (b/a = 1.5
and b/a = 2). Here we have plotted the total scattering efficiency
versus the parameter p = 2ka(m-1) which is the phase shift of a ray
traversing the spheroid along its symmetry axis. The extra points
are shown only for p values greater than those for which they would

fall on the curves. For example we see in Figure 2 that the el

point (s = 4) approximation is acceptable on the m = 1.5 curve up to
about p = 3 (perhaps slightly less) whereas on the m = 1. 3 curve, it

is acceptable only to about p =2.2. Note that this is reasonable
because the corresponding values of ka are both about ka = 3. Further-
more in both cases the value of (b/a)ka is greater than four which

is the required number of approximating points. We could apply this
argument to the results for b/a = 2 presented in Figure 4. We should
expect, for example that for s = 5 the approximation should be good for

ka=2.50rp =2.5and p =15 for m = 1.5 and 1. 3 respectively. It

23,
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Figure 2 _SCATTERING EFFICIENCIES FOR b/a=15,5s=6 _
AND A SAMPLING OF s=4 AND 5
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SCATTERING EFFICIENCY Q('Z)
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(8) | (10)| _(16)
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p = 2kalm-il

Figure 3 _SCATTERING EFFICIENCIES FOR b/a =2.0,s=6

AND A SAMPLING OF s= 4,5, AND 8
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SCATTERING EFFIcIENCY Q"2

RATIO OF MAJOR TO MINOR AXES:
26.

p=2kalm-1l
Figure 4 SCATTERING EFFICIENCIES FOR

m=|3,8=6




can be seen that actually the approximation appears to be good up to
and somewhat beyond p = 3 and p = 2 for the two indices of refraction.
In Figures 4 and 5 we show the effect of elongation on the
variation of extinction efficiency with p. The shift of the maximum
in the total cross-section curves toward shorter values of p (by the
factor a/b) with increasing b/a has an obvious explanation in terms
of 2 ray approximation. However the interesting result which is
lost in the simple ray approximation is the tendency toward increasing
the height of the first broad maximum in the efficiency curve as b/a
increases, and simultaneously introducing a deeper dip in the first
minimum. It should be remarked that this confirms at least these
qualitative aspects of early experimental data on scattering by

7
dielectric spheroids. So far no simple theoretical explanation has

been given for these effects.

21.



SCATTERING EFFICIENCY Q™2

28,

RATIO OF MAJOR TO MINOR AXES:
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2.0 3.0
p=2kalm-Il

4.0 5.0

Figure 5 SCATTERING EFFICIENCIES FOR
m=15,s=6




29.

3. Scattering by Arbitrarily Oriented Infinite Dielectric Cylinders

The problem of scattering of electromagnetic radiation normally

incident on a homogeneous dielectric cylinder was solved long ago by

., 8 . . .
Lord Rayleigh. The equivalent solution for the scattering of scalar
waves was extended to the case of arbitrary incidence by Montroll and

O . . . .
Hart and later extended by approximation to include inhomogene-
ous dielectric cylinders (actually the scalar wave analogue). Several
11

year later Wait generalized the electromagnetic scattering from a
cylinder to include arbitrary orientation.

Although many calculations have been performed for the case of
normal incidence, we have not been able to find any for the tilted
cylinder. An extensive set of calculations are being carried out for

. . : . 12
this problem , the results of which will be published elsewhere.
We limit ourselves here to a demonstration of the method for obtaining
the results and some examples of the calculations. We also indicate
some interesting effects that occur as the cylinder is tilted.

The remainder o:i this section is devoted to the calculation of
scattering by a dielectric cylinder in vacuum. The generalyizations to
include other cases will be made in a later paper.

a. Basic equations for cylinder scattering.

13

We follow the notation of van de Hulst. Let U and V be two

solutions of the scalar wave equation
2 2.2 \
Vv+mk =0 (20)

We define the associated solutions M and ‘I‘\I_'of the vector wave equation




i<

p o Ix B @1)

k N
4

3

TR
where 2 is a unit vector along the cylinder axis.

The electric and magnetic fields are then given by

E=My+ily,

m(—MU + 1 N’V)

Referring to Figure 6 we write the solutions U and V corres-

(22)

H

ponding to the "E'" or "H" case; i.e., radiation linearly polarized with
the electric and magnetic vector in the plane containing the cylinder axis

and the propagation vector lfw

"E case "H'" case
U= E_oc F [J_(tr) - bf H (r) v=% Fn[-benur)
T \Y% =nizc_°0 Fn[-aan(zr) \Y% =n§:_an[Jn(£r)-aan(1r)
U =n:ZOE-°0 Fndr}fjnulr) U=z Fndf Jn(llr)
Ty - B F 7_(e7) V=ZF 3_r)
where
F_=(-i)  exp(iwt-ikzsina+in)
1=kcosa,£l=ka2-sin2a, a:%-x

a = radius of cylinder

Jn = cylindrical Bessel function of the first kind

Hn = cylindrical Hankel function of the second kind.
Applying the appropriate boundary conditions on E and H at

the surface of the cylinder we obtain the coefficients an, bn’ c , dn’
n

30.

(23)

(24)
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o . B_(1) - A_(u)
a =insinaSR - 5 5
n n A (eJ)A (0) -n S sin «a
. n n
2
A (n) B (e) - nZSZ sin «
E n n
bn - Rn 2 2 2
. A () A (0)-n S sin «
R < n n
2
E " (£a) Hn(la) E
Cp T 2 %n
(Zla) Jn(,lla)
E (la)‘2 E
d = e [J (#a) - H (ta) b~ ]
n n n

2
(Ela) Jn(fla)

> (25)
/ A (e) B (n) - nZS2 sin2 o
n n

H
a =R
BB A () A () - n°S% sin® q
n 1
H E
bn - aln
HHH J
H (L )2 H
c = N Za [Jn(la) - Hn(la) a_ ]
(Ila) Jn(lla)
2
\ de e (fa) H,(a) bH
D (lla) J (Ela) n
where
S = (fa) - (zla)'2 ; R_= Jn(za)/Hn(za)
Hn' (2a) Jn' (Ila) Jn' (£2) Jn' (Ila)
A8 = ) f i B T ¢ i 2)
n 1 n’l n 1 n’l

The extinction efficiencies (using the optical theorem) and the

scattering efficiencies obtained by integrating the differential scattering

cross-section are given by

32,



33.

E
c
E ext 2 E x E
= = — 22 2,
Qext 2a ka Re %bo ¥ n=1 bn} (26)
cH
H ext 2 H x© H
= = e +2 Z 2
Qext Z2a ka Re iao n=l °n } (27)
E
c
E sca 2 E 2 =) L, E 2 E 2
= Prp— N Z b i 2
sca 2a ka Ubol tez, (b 1+ fa | )] (28)
CH
H sca 2 H, 2 =} H 2 H 2
= = i 2 Z | + 2
Qsca 2a ka [Iaoi + nz1 Hanl Ibnl )] {29)
When the index of refraction is real Q =Q . All of the
ext sca

above (Eqgs. 26 - 29) apply to unit length of cylinder.

The case of arbitrary orientation of the cylinder axis relative
to the 1:, E, and H of an incident electromagnetic wave of arbitrary state
of polarization can be made up of a linear superposition of the basic "E"
case and "H'" case solutions with appropriate amplitudes and phases (see
Eq. (34)).

b. Numerical results for the tilted cylinder

The calculations have been made for cylinders with real
index of refraction m = 1. 6 which corresponds to the index of refraction

of lucite for microwaves. As a numerical check, Q and © a were
e sc

xt
independently evaluated.

In Fig. 7 we have plotted the complex expressions

2 E e | E 2 H x H
—_ — 2
ka §b0 te nz:l bn} and ka {aO * n2=1 an}

the projections on the real axis being the extinction efficiencies. The
cylinder for which ka = 0.7 is rather thin and it is to be expected that

for normal incidence only a few terms in the expansions are required.

This is indeed the case. Furthermore as the propagation
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direction approaches the direction of the cylinder axis (X - Oo,
a - 900), only the n = 1 terms for the "E" case and the "H'' case

o
are important. It can be shown that as X - 0

4 4 2

i
_b_—-a_lx:oo-l-;—a—- -2‘;[411‘11&.—.6159

ka 1 ka

J ' a) -1

2 171
+ 4 (ll a) +2 (e+ p)ma)]\{ (30)

17177 )

This is the equation for a circle whose center is at(ha)—l and
whose radius is (ka)- . We see, then, that as both X - OO and
ka - 0 the extinction efficiency will, for some small X, become very
large. It should be pointed out, however, that the cross-section must
eventually go to zero at grazing incidence.
We show, in Fig. 8, the extinction efficiency as a function of
orientation for the same cylinder (ka = 0.7) represented by Fig. 7.
The computations for a slightly larger cylinder (ka = 0.8)
are shown in Fig. 9. The very interesting feature to be noted here
is the crossover of the QE and QH curves. The crossover of Q
and QH (polarization reversal) for large cylinders and normally
incident radiation has been known (Dubois effectis for a long time.
However, the effect shown in Fig. 8 is quite different in that it
shows up for small cylinders and is a function of their orientation.
As one increases the cylinder diameter, more and more
terms are required in the expansion and, as a consequence, then =1

term is no longer dominant except for extremely small values of X.

This is shown in Fig. 10 where the circular form of the complex
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extinction has almost vanished. It can be seen in Fig. 1l that for
ka 2 1 the values of Q and Q become relatively insensitive to
cylinder tilt angle and that also Q - Q is fairly constant.

Finally in Fig. 12 we see some samples of the variations of the

- E . L . o 0

extinction Q with size for tilt angles X =1 and X = 10 . For normal
incidence (X = 900) one obtains a curve which (except for a few
wiggles) rises uniformly to a maximum at 2ka(m - 1) * 4 (ka = 3.3 in
our case) then decreases for a rather considerable distance in ka.

A comment on angular scattering distribution is perhaps in
order. It should be noted that the scattered radiation is confined to
a cone whose half angle is the angle X. In other words, for the infinite
cylinder there is no true back scattering even though there is radia-

tion appearing at 6 = 180°.
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4. Microwave Scattering

A preliminary account of this work which consists of a new and im-
proved method for obtaining detailed information on the extinction cross
sections for scattering of 3 cm microwaves by arbitrarily oriented particles
has appeared elsewhere. 15 . More detailed exposition of the experimental
method is being prepared for publication. We present here an enlarged
abstract along with some of the results.in order to demonstrate the useful-
ness of the experimental approach to the scattering problem. It should be
remembered that in practice the problems we are faced with can not entirely
be solved by consideration of simple particle shapes and that, as of this
moment, only the scattering of a scalar wave propogated along the axis of
an axially symmetric particle has yielded numerical results, The theoretical
calculation of the general case of scattering of electromagnetic radiation for
arbitrary particle orientation, at least by a method similar to that in section 2
of this paper, while feasible would be enormously expensive for sizes

(relative to wave length) which can readily yield good experimental results.

a. Theoretical Basis for the Measurements
The experimental determination of the total (extinction) cross section
including both scattering and absorption is conveniently done by measuring
the forward scattering amplitude employing the optical theorem, the vector

16
form of which is

Cot = (4-n'/k2) q - £qsin @ (31

w

42.




iQ . . . . .
where vaqe @ is the complex vector amplitude in the forward direction for
wv
incident radiation polarized along the direction of the unit vector q.
w

Although Figure 6 could in principle be referred to at this point, it
seems desirable for clarity to present a somewhat different realization in
Figure 13. Apgain the angle ¥ is used to describe the orientation of the
symmetry axes relative to the direction of propagation. The angle between
the direction of polarization and the plane containing v1~<~ and the symmetry
axis is called .

We denote the forward scattering amplitude when ¢ = 0O as fE( X)
and when ¢y = 90° as fH(x ). Due to the symmetry of our scatterers it
is necessary to know only the cross section in these two mutually perpendi-
cular planes; i.e., the E -k, plane and the }»v{/ - l‘svplane in order to fully
describe the case for arbitrary orientation.

The scattering amplitude for a particle oriented as in Figure 13
is given by

2 . .
€, ) = [£5(X) cos™y +£.(x)sind ] §,
(32)

- f . -‘
+[fE(x) H()?)] sin ¢ cos Y J,
where i and ijare unit vectors along the x and y direction respectively.
w

The optical theorem then gives

C__{x: ¥) =35 [£(x) sing(x) cos’y

ext

+ fH(x } sin qu(x ) sianJ ] (33)
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or, in the notation of section 3 for extinction efficiencies,

Q_ (X4} = Q%(x ) cos®y + Q7(x ) sin®y (34)

b. Experimental Procedure

Essentially the experimental procedure consists in first nulling out
the received incident radiation when no target is present and then displaying
graphically on an X - Y plotter the real and imaginary components of the
additional signal produced by a target.

In Figure 14 is shown a reproduction of an X - Y chart recording
for a typical run., The curves labelled kE and kH represent the locus
of the complex forward scattering amplitudes as the particle orientation is
charged (vary X)within the two mutually perpendicular planes previously
mentioned. The dots along the curves are put in by hand as the target
orientation mechanism is stopped at the designated angles. The origin from
which the complex scattering amplitudes are measured is determined by
rapidly lowering the target and noting the final position on the X - Y plotter.
The line labelled "Target Dropping'' is a tracing of the X - Y pen as the
scatterer is lowered out of the incident beam. In order to normalize and
orient the scattering amplitudes one experimentally locates the point which
defines the complex scattering amplitude for a sphere of known size and
index of refraction. A Mie theory calculation for the scattering by the

sphere gives the phase ((pcalc' in.the Figure) and the amplitude (Ifcalc ]).

45,
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The phase, ?alc’ is used to orient the real and imaginary axes, and the
amplitude Ifcalci’ defines the absolute scale in the X - Y plane. In order
to eliminate the possibilities of systematic errors which could be intro-
duced if a particular sphere is inaccurately manufactured, we perform the
actual normalization by averaging over a set of ''standard' spheres.

The repeatability and the internal consistency of the measurements
have been quite good with deviations of less than 2 percent in the magnitude
and 3° in phase of the forward scattering amplitude.

It can be seen that the experimental data appears naturally in ex-
actly the same form as that which we have used in Figures 7 and 10 for the
theoretical results on the cross section of infinite cylinders. This manner
of presentation of the raw data makes it possible todetect and measure subtle
differences in scattering produced by orientation changes and is perhaps

the most important feature of our new experimental procedure.

c. Results
Figure 15 is shown as an example of the information which can be
extracted from the raw data. We have plotted here the real and imaginary
components as well as the absolute value and phase of the forward scattering
amplitude for a prolate spheroid as a function of its orientation. The degree
of internal consistency of the experimental method may be inferred from the

smoothness of the curves.

47.
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As is well known the Rayleigh approximation becomes rapidly poorer
as ka exceeds unity. This is clearly demonstrated in Figure 16 where total
cross sections are shown for a prolate spheroid which while still fairly small
has ka = 2.5. The Rayleigh approximation is incorrect by a factor of 5. On
the other hand a low index of refraction scalar approximation6 is in re-
markably good agreement (less than 3 percent difference from QE) in spite
of the fact that m = 1. 255 is certainly not very close to one. It had been
shown by van de Hulst17 that this kind of agreement is not unusual for
spheres but as has already been stated in section 2 the agreement for spheroids
may become particularly poor for certain values of ka; namely, the values
of ka which define the major extinction resonance for axially incident radiation.
It turns out that ka = 2.5 is sufficiently below this value of ka @ 4. One
should expect the agreement between the low index scalar wave approximation
to be poor for ka = 4.6 (defining the spheroid of Figure 15) and this is indeed
the case. It is rather interesting and important in some applications to note
that the  polarization ratio QE/QH obtained experimentally for the ka =
2.5 spheroid is very close to that obtained from the Rayleigh approximation,
and is not too different from that for the infinite cylinder with ka = 2.1
(See Figure 11).

For the largest spheroid with ka = 10.1 it is reasonable to compare
the results with those predicted by the geometrical optics limit as well as

those given by the ray approximation. Therefore, in Figure 17 along with
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a curve for the extinction efficiency, a curve is plotted for the extinction
cross section divided by the geometric optics cross section; i. e., twice the
projected area presented by the spheroid to the incident radiation. This
quantity oscillates around the value 1l for different orientations. The ray
approximation is in partial agreement with the experimental results for
ka = 10.1 in that it gives a very similar dependence of cross section on
orientation. The agreement is certainly not as good as that for ka = 2.5
although it is probably satisfactory for semi-quantitative calculations.
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